Hyperpolarization-independent maturation and refinement of GABA/glycinergic connections in the auditory brain stem.
نویسندگان
چکیده
During development GABA and glycine synapses are initially excitatory before they gradually become inhibitory. This transition is due to a developmental increase in the activity of neuronal potassium-chloride cotransporter 2 (KCC2), which shifts the chloride equilibrium potential (ECl) to values more negative than the resting membrane potential. While the role of early GABA and glycine depolarizations in neuronal development has become increasingly clear, the role of the transition to hyperpolarization in synapse maturation and circuit refinement has remained an open question. Here we investigated this question by examining the maturation and developmental refinement of GABA/glycinergic and glutamatergic synapses in the lateral superior olive (LSO), a binaural auditory brain stem nucleus, in KCC2-knockdown mice, in which GABA and glycine remain depolarizing. We found that many key events in the development of synaptic inputs to the LSO, such as changes in neurotransmitter phenotype, strengthening and elimination of GABA/glycinergic connection, and maturation of glutamatergic synapses, occur undisturbed in KCC2-knockdown mice compared with wild-type mice. These results indicate that maturation of inhibitory and excitatory synapses in the LSO is independent of the GABA and glycine depolarization-to-hyperpolarization transition.
منابع مشابه
Maturation of Calcium-Dependent GABA, Glycine, and Glutamate Release in the Glycinergic MNTB-LSO Pathway
The medial nucleus of the trapezoid body (MNTB) is a key nucleus in high-fidelity temporal processing that underlies sound localization in the auditory brainstem. While the glycinergic principal cells of the MNTB project to all primary nuclei of the superior olive, during development the projection from MNTB to the lateral superior olive (LSO) is of interest because this immature inhibitory pro...
متن کاملGABA(B) and Trk receptor signaling mediates long-lasting inhibitory synaptic depression.
In many areas of the nervous system, excitatory and inhibitory synapses are reconfigured during early development. We have previously described the anatomical refinement of an inhibitory projection from the medial nucleus of the trapezoid body to the lateral superior olive in the developing gerbil auditory brain stem. Furthermore, these inhibitory synapses display an age-dependent form of long-...
متن کاملRefinement of Inhibitory Circuits during Development of the Mammalian Auditory Brainstem
Establishing precise neuronal connections is crucial for normal brain function. In many parts of the brain, this is accomplished by refining initially diffuse neuronal connections during development. In contrast to our understanding of the mechanisms by which excitatory connections are refined, the refinement of inhibitory circuits is poorly understood. In this thesis, I investigated the refine...
متن کاملStaggered development of GABAergic and glycinergic transmission in the MNTB.
Maturation of some brain stem and spinal inhibitory systems is characterized by a shift from GABAergic to glycinergic transmission. Little is known about how this transition is expressed in terms of individual axonal inputs and synaptic sites. We have explored this issue in the rat medial nucleus of the trapezoid body (MNTB). Synaptic responses at postnatal days 5-7 (P5-P7) were small, slow, an...
متن کاملCLINICAL CORRELATIONS BETWEEN AUDITORY BRAIN STEM RESPONSE AND MAGNETIC RESONANCE IMAGING IN PATIENTS WITH DEFINITE MULTIPLE SCLEROSIS
In an attempt to assess objectively the integrity of the auditory pathways in 30 patients with definite multiple sclerosis (MS), an audiometric evaluation was performed and auditory brainstem responses (ABRs) were obtained. Stressing the auditory system by increasing the stimulation rate showed some enhancement in the identification of MS. 24 (RO%) patients had an abnormal ABR along with c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 115 3 شماره
صفحات -
تاریخ انتشار 2016